V錐流量計在蒸汽測量中可膨脹系數實驗 發布時間:2018-07-03
摘要利用蒸汽實流檢測裝置分別在不同工況條件下,開展了L懸臂梁V錐流量計的可膨脹系數ε實驗測試,實驗樣機為DN50mm和DN100mm兩種口徑,其等效直徑比β有0.55、0.65、0.75這3種規格,建立V錐流量計在蒸汽介質條件下的可膨脹系數擬合方案,利用實驗數據擬合得到了V錐流量計在蒸汽介質條件的可膨脹系數經驗擬合公式。實驗結果表明:蒸汽介質條件下的擬合公式與空氣介質條件的經驗擬合公式存在偏差,最大可能會引起5%的計量偏差。 V錐流量計最早由美國的McCrometer在20世紀80年代中期研制生產,后被人們普遍認可并得到了廣泛的應用,特別是其相對于孔板等其他差壓式流量計,具有壓損小、量程比大、前后直管段長度小及抗臟污等優點[1,2],被廣泛應用于蒸汽、管道煤氣及天然氣等氣體介質流量的測量中,具有替代孔板、文丘里管及標準噴嘴等差壓式流量計的趨勢。隨著V錐流量計的應用與推廣,其應用于蒸汽及管道煤氣等其他氣體介質測量中的精度受到了質疑,尤其是V錐流量計可膨脹系數這個氣體測量的重要參數的使用,逐漸成為研究人員、生產制造商和用戶關心的熱點問題。可膨脹系數的研究已成為制約V錐流量計發展的關鍵因素。 1V錐流量計可膨脹系數擬合公式數學模型 V錐流量計是一種差壓式流量計,其結構原理如圖1所示,流體自截面1處流到截面2處,在流動過程中滿足質量守恒定律與能量守恒定律。 可用流體的連續性方程和伯努利方程聯合求解得到V錐流量計的流量計算公式: 式中C———流出系數; D———管道內徑; qm———質量流量; β———截面2和截面1流通面積的等效直徑比; Δp———上游截面1與下游截面2取壓口之間的壓力差; ε———可膨脹系數; ρ———截面1處的流體密度。 由式(1)可知,對空氣、蒸汽及天然氣等可壓縮流體的流量進行測量時,流出系數C和可膨脹系數ε是在一起的,無法分開。標準孔板、噴嘴實驗研究結果以及前人對V錐流量計可膨脹系數的研究成果表明[8],V錐流量計的可膨脹系數ε與管徑和雷諾數無關,在給定流量計和等效直徑比的情況下,ε取決于等熵指數κ和壓力比Δp,可以用直線方程y=ax+b表示兩者的關系,具體公式為: 其中a、b為常數,p1為截面1處的壓力。 可膨脹系數是用來修正流體的壓縮性在流量測量時所引入的偏差。氣體體積變化主要由壓力差引起,若流量計上游壓力不變,隨著Δp的減小,可膨脹系數ε也逐漸趨于1。當壓力差為零時,也就是Δp/κp1=0時,ε=1,故C=b。 將式(2)兩端同除以C得到: 此外研究表明,可膨脹系數ε還是等效直徑比β的函數,a'可表示為形如下式的關于β的n次多項式: 其中k、l、m均為常數。因此,對不同β值的內錐流量計進行實驗,擬合Cε與Δp/κp1的線性關系曲線,進而得到一系列a'值,并按照式(4)進行擬合,綜合得到可膨脹系數的計算公式: 2蒸汽介質可膨脹系數實驗方案 2.1實驗方法 由式(1)可知,利用蒸汽流量標準裝置實驗能夠獲得流出系數C和可膨脹系數ε的乘積,進而得到以εC為縱坐標,Δp/κp1為橫坐標的擬合圖。根據式(5)可膨脹系數模型,在水流量標準裝置上進行實驗,標定出流出系數C,即可得到可膨脹系數ε的擬合公式。 由式(5)可以發現,可膨脹系數ε與等效直徑比β、壓力差Δp和上游側壓力p1相關。為使研究具有普適性,選擇不同的β、Δp和p1進行實驗,分析這3個參數對可膨脹系數的影響規律。具體方法是:β由流量計本身的尺寸參數決定,在實驗樣機加工過程中,采用可換錐的方式實現β的改變;Δp受介質流速的影響,在實驗中通過改變實驗流量實現Δp的改變;p1的改變由蒸汽流量標準裝置改變檢測工況條件實現。 2.2實驗樣機 實驗樣機為兩臺可換錐頭L懸臂型內錐流量計,口徑分別為DN50mm和DN100mm,其結構如圖2所示,該流量計樣機均由測量管、引壓管、錐體、法蘭及取壓口等部件組成。 DN50mm實驗樣機共有等效直徑比為0.55、0.65、0.75的3個錐體,DN100mm實驗樣機也共有等效直徑比為0.55、0.65、0.75的3個錐體,其實物如圖3所示。 2.3實驗參數設置 在以蒸汽為測試介質的實驗中,為達到改變實驗工況的條件,實驗分別在0.2、0.3、0.4MPa3種壓力條件下進行,共計24組實驗。其中在0.2MPa時,對DN50mm管徑的流量范圍設置為50~400m3/h,對DN100mm管徑設置為200~2000m3/h,溫度均為143~145℃;0.3MPa時,對DN50mm管徑的流量范圍設置為40~400m3/h,對DN100mm管徑設置為200~2000m3/h,溫度均為146~148℃;0.4MPa時,對DN50mm管徑的流量范圍設置為40~400m3/h,對DN100管徑設置為200~2000m3/h,溫度均為162~164℃;在實驗中保證V錐流量計的前直管道長度大于20D,后直管道長度大于10D。 3實驗數據 根據實驗方案取得DN50mm和DN100mm兩種孔徑、3個等效直徑比β條件下的實驗測試數據,利用各組有效數據獲得的εC和Δp/κp1,以Δp/κp1為橫坐標,εC為縱坐標進行線性擬合,擬合數據結果如圖4所示。 由圖4可以看出,在Δp/κp1相同時,蒸汽介質的可膨脹系數ε的線性擬合度很高,R2均達到了0.9800以上。進一步驗證了氣體介質的可膨脹系數ε與流出系數C的乘積與Δp/κp1呈線性關系。 通過水流量標準裝置標定出DN50mm和DN100mm兩種孔徑各等效直徑比下的流出系數C,然后對實驗數據擬合參數a'與等效直徑比β的關系,得到蒸汽介質條件下l、k、m分別為l=-0.4599,k=0.0251,m=-0.5312。代入式(5)即可得到蒸汽介質下可膨脹系數的經驗計算公式: 4蒸汽與空氣可膨脹系數經驗公式的比較 蒸汽介質對V錐流量計可膨脹系數的影響,以β=0.55的V錐流量計為例,標定出在蒸汽介質的可膨脹系數ε,與利用2003年ISO5167發布的差壓式孔板流量計的擬合公式、2001年NEL實驗得到的V錐流量計的擬合公式和2008年天津大學徐英等實驗得到的擬合公式計算得到的可膨脹系數ε進行比較。令: 最終得到了如圖5所示的β=0.55時V錐流量計蒸汽與空氣介質條件下不同擬合公式的可膨脹系數相對偏差圖。從圖5中可以看出在蒸汽介質條件下的可膨脹系數的擬合公式與ISO5167在2003年公布的孔板流量計的擬合公式最為接近,相對偏差不超過0.5%,與其他擬合公式存在較大差異,最大偏差在5.0%左右。 5結論 5.1V錐流量計測量蒸汽流量時,由于蒸汽介質作為可壓縮流體,其測量精度不僅與流出系數相關,可膨脹系數影響的因素也較大,不進行補償會導致最大10%左右的偏差。 5.2V錐流量計測量蒸汽流量時,蒸汽介質的可膨脹系數ε與流出系數的乘積C與Δp/κp1呈線性關系,與空氣介質相同。 5.3V錐流量計測量氣體時,在相同的Δp/κp1條件下,蒸汽介質的可膨脹系數ε與空氣介質不同,且蒸汽介質的可膨脹系數要大于空氣介質的,在測量蒸汽時,以空氣為介質擬合得到的經驗公式進行修正將會導致計量偏差,最大會引起5.0%左右的計量偏差。
以上內容來源于網絡,如有侵權請聯系即刪除!